## Exercise 7

Solve the differential equation.

$$
3 y^{\prime \prime}=4 y^{\prime}
$$

## Solution

This is a linear homogeneous ODE with constant coefficients, so its solutions are of the form $y=e^{r x}$.

$$
y=e^{r x} \quad \rightarrow \quad y^{\prime}=r e^{r x} \quad \rightarrow \quad y^{\prime \prime}=r^{2} e^{r x}
$$

Plug these formulas into the ODE.

$$
3\left(r^{2} e^{r x}\right)=4\left(r e^{r x}\right)
$$

Divide both sides by $e^{r x}$.

$$
3 r^{2}=4 r
$$

Solve for $r$.

$$
\begin{gathered}
3 r^{2}-4 r=0 \\
r(3 r-4)=0 \\
r=\left\{0, \frac{4}{3}\right\}
\end{gathered}
$$

Two solutions to the ODE are $e^{0}=1$ and $e^{4 x / 3}$. By the principle of superposition, then,

$$
y(x)=C_{1}+C_{2} e^{4 x / 3}
$$

where $C_{1}$ and $C_{2}$ are arbitrary constants.

